Definition A one-point extensionof $(G,\Omega)$ is a transitive permutation group $(G^+,\Omega^+)$ with $(G^+)_\omega = G$
By the stabilizer-orbit theorem $|G_+| = |G|(|\Omega|+1)$. If $G^+$ is $t$-transitive then G is $(t-1)$-transitive.
Example $S_n$ and $A_n$ have one point extensions $S_{n+1}$ and $A_{n+1}$.
Non-example $D_8$ doesn't have one by Sylow theory.
Take $\alpha \in \Omega$, we know the rank $r$ of $G$ equal to the number of double cosets in $G$. For $g_1,\ldots,g_r \in G$ we have a complete representation of the double coset system iff $\alpha g_1,\ldots,\alpha g_r$ is a complete set of representatives of $G_\alpha$-orbits. wlog take $g_1 = 1$, if $(G^+,\Omega^+)$ is a one point extension of $(G,\Omega)$ then it is 2-transitive so it has a primitive action and hence the point stabilizer $G$ is a maximal subgroup of $G^+$: for any $x \in G^+ \setminus G$ we must have $\langle x, G \rangle = G^+$. We can wlog choose $x$ to interchange $\alpha$ and $\omega$.
Theorem Let $(G,\Omega)$ be a transitive permutation group of rank $r$ for $\alpha \in \Omega$, let $g_1=1,g_2\ldots,g_r$ be a complete set of representatives of the double coset system. Take $\omega \not\in \Omega$ and form $\Omega^+ = \Omega \cup \{\omega\}$. Take $x \in S_{(\Omega^+)}$ (so some permutation from the symmetric group) with $\alpha x = \omega$, $\omega x = \alpha$ and set $G^+ = \langle x, G \rangle$ then $(G^+,\Omega^+)$ is a one point extension iff:
- $x^2 \in G_\alpha$
- $(G_\alpha)^x = G_\alpha$
- $g_i^x \in GxG$ for all $i > 1$.
No comments:
Post a Comment