- 0: {δ1,δ2}, 1: {δ1,δ3}, 2: {δ1,δ4}
- 3: {δ1,δ5}, 4: {δ2,δ3}, 5: {δ2,δ4}
- 6: {δ2,δ5}, 7: {δ3,δ4}, 8: {δ3,δ5}
- 9: {δ4,δ5}
- a=(δ1δ2)(δ3δ5)=(16)(25)(34)(79)
- b=(δ1δ2)(δ4δ5)=(14)(26)(35)(78)
- g2=(δ2δ3)(δ4δ5)=(01)(23)(58)(67)
- g3=(δ1δ4)(δ2δ3)=(07)(15)(39)(68)
The stabilizer of 0 has size |G0|=|G|/|Ω|=60/10=6 (orbit stabilizer) so G0=⟨a,b⟩={1,a,b,ab,ba,aba=bab} and the G0 orbits are:
- {0}
- {1,2,3,4,5,6}
- {7,8,9}
gap> a:=(1,2)(3,5);;b:=(1,2)(4,5);; gap> DoubleCosets(Group((1,2,3,4,5),(1,2,3)),Group(a,b),Group(a,b)); [ DoubleCoset(Group( [ (1,2)(3,5), (1,2)(4,5) ] ),(),Group( [ (1,2)(3,5), (1,2)(4,5) ] )), DoubleCoset(Group( [ (1,2)(3,5), (1,2)(4,5) ] ),(2,3)(4,5),Group( [ (1,2)(3,5), (1,2)(4,5) ] )), DoubleCoset(Group( [ (1,2)(3,5), (1,2)(4,5) ] ),(1,3)(2,4),Group( [ (1,2)(3,5), (1,2)(4,5) ] )) ]
so take ∞∉Ω and set Ω+=Ω∪{∞} then choose x=(∞0)(23)(46)(89) then
- x2=1∈G0
- ax=b and (since x has order 2) bx=a so Gx0=G0.
- gx2=(∞1)(23)(59)(47)=xg2∈GxG.
- gx3=(∞7)(15)(28)(49)=xg3ab∈GxG.
Theorem L is simple.
1 and x are (G,G)-double coset reps in L. Take ω∉Ω+ and form Ω⋆=Ω+∪{ω}. y=(ω∞)(14)(25)(36) then
- y2=1∈G=L∞
- Gy=G since G=⟨a,b,g2,g3⟩ and ay=a, by=b, gy2=gb2, gy3=g3ab.
- xy=yxab∈LyL
Theorem M11 is simple.
From Jordan's theorem we see that we cannot perform another one point extension.
No comments:
Post a Comment