- 0: $\{\delta_1,\delta_2\}$, 1: $\{\delta_1,\delta_3\}$, 2: $\{\delta_1,\delta_4\}$
- 3: $\{\delta_1,\delta_5\}$, 4: $\{\delta_2,\delta_3\}$, 5: $\{\delta_2,\delta_4\}$
- 6: $\{\delta_2,\delta_5\}$, 7: $\{\delta_3,\delta_4\}$, 8: $\{\delta_3,\delta_5\}$
- 9: $\{\delta_4,\delta_5\}$
- $a = (\delta_1\;\delta_2)(\delta_3\;\delta_5) = (1\;6)(2\;5)(3\;4)(7\;9)$
- $b = (\delta_1\;\delta_2)(\delta_4\;\delta_5) = (1\;4)(2\;6)(3\;5)(7\;8)$
- $g_2 = (\delta_2\;\delta_3)(\delta_4\;\delta_5) = (0\;1)(2\;3)(5\;8)(6\;7)$
- $g_3 = (\delta_1\;\delta_4)(\delta_2\;\delta_3) = (0\;7)(1\;5)(3\;9)(6\;8)$
The stabilizer of 0 has size $|G_0| = |G|/|\Omega| = 60/10 = 6$ (orbit stabilizer) so $G_0 = \langle a, b \rangle = \{1,a,b,ab,ba,aba=bab\}$ and the $G_0$ orbits are:
- $\{0\}$
- $\{1,2,3,4,5,6\}$
- $\{7,8,9\}$
gap> a:=(1,2)(3,5);;b:=(1,2)(4,5);; gap> DoubleCosets(Group((1,2,3,4,5),(1,2,3)),Group(a,b),Group(a,b)); [ DoubleCoset(Group( [ (1,2)(3,5), (1,2)(4,5) ] ),(),Group( [ (1,2)(3,5), (1,2)(4,5) ] )), DoubleCoset(Group( [ (1,2)(3,5), (1,2)(4,5) ] ),(2,3)(4,5),Group( [ (1,2)(3,5), (1,2)(4,5) ] )), DoubleCoset(Group( [ (1,2)(3,5), (1,2)(4,5) ] ),(1,3)(2,4),Group( [ (1,2)(3,5), (1,2)(4,5) ] )) ]
so take $\infty \not\in \Omega$ and set $\Omega^+ = \Omega \cup \{\infty\}$ then choose $$x = (\infty\;0)(2\;3)(4\;6)(8\;9)$$ then
- $x^2 = 1 \in G_0$
- $a^x = b$ and (since $x$ has order 2) $b^x = a$ so $G_0^x = G_0$.
- $g_2^x = (\infty\;1)(2\;3)(5\;9)(4\;7)=x^{g_2} \in G x G$.
- $g_3^x = (\infty\;7)(1\;5)(2\;8)(4\;9)=x^{g_3} a^b \in G x G$.
Theorem $L$ is simple.
$1$ and $x$ are $(G,G)$-double coset reps in $L$. Take $\omega \not \in \Omega^+$ and form $\Omega^\star = \Omega^+ \cup \{\omega\}$. $$y=(\omega\;\infty)(1\;4)(2\;5)(3\;6)$$ then
- $y^2 = 1 \in G = L_{\infty}$
- $G^y = G$ since $G = \langle a,b,g_2,g_3 \rangle$ and $a^y = a$, $b^y = b$, $g_2^y = g_2^b$, $g_3^y = g_3 a^b$.
- $x^y = y^x a^b \in L y L$
Theorem $M_{11}$ is simple.
From Jordan's theorem we see that we cannot perform another one point extension.
No comments:
Post a Comment